
Interface Grammars for Modular Software Model Checking∗

Graham Hughes and Tevfik Bultan
Computer Science Department

University of California
Santa Barbara, CA 93106, USA

{graham,bultan}@cs.ucsb.edu

ABSTRACT
We propose an interface specification language based on
grammars for modular software model checking. In our
interface specification language, component interfaces are
specified as context free grammars. An interface grammar
for a component specifies the sequences of method invoca-
tions that are allowed by that component. Using interface
grammars one can specify nested call sequences that can-
not be specified using interface specification formalisms that
rely on finite state machines. Moreover, our interface gram-
mars allow specification of semantic predicates and actions,
which are Java code segments that can be used to express
additional interface constraints. We have built an interface
compiler that takes the interface grammar for a component
as input and generates a stub for that component. The re-
sulting stub is a table-driven parser generated from the input
interface grammar. Invocation of a method within the com-
ponent becomes the lookahead symbol for the stub/parser.
The stub/parser uses a parser stack, the lookahead, and a
parse table to guide the parsing. The semantic predicates
and semantic actions that appear in the right hand sides
of the production rules are executed when they appear at
the top of the stack. We conducted a case study by writing
an interface grammar for the Enterprise JavaBeans (EJB)
persistence interface. Using our interface compiler we au-
tomatically generated an EJB stub using the EJB interface
grammar. We used the JPF model checker to check EJB
clients using this automatically generated EJB stub. Our
results show that EJB clients can be verified efficiently us-
ing our approach.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]; F.3.1 [Specifying
and Verifying and Reasoning about Programs]

∗This work is supported by NSF grants CCF-0614002 and
CCF-0341365.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07, July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

Keywords
interface grammars, modular verification, model checking

General Terms
Verification

1. INTRODUCTION
The application of model checking techniques directly to

programs [11, 16, 4] has shown promise for specific verifica-
tion tasks, such as checking for concurrency errors [16] or
checking device drivers for interface violations [4]. However,
there are two related problems that hinder applicability of
model checking to software in a wider scale: 1) state space
explosion (i.e., exponential increase in the search space by
increasing number of variables and concurrent components)
limits the scalability of model checking techniques and 2) en-
vironment generation (i.e., finding models for parts of soft-
ware that are outside the scope of the model checker) limits
the applicability of model checking to the domains where
such environment models are available.

Our focus in this paper is model checking Java programs.
The limitations we mentioned above are apparent in Java
Path Finder (JPF) [16], which is a model checker for Java
programs. JPF cannot handle native calls in Java programs.
Hence, in order to use JPF for verification of Java programs,
one has to write environment models for any component that
uses native code, which is a daunting task.

Note that inability to handle native code is not only a
limitation specific to JPF, but it is the sign of an inher-
ent problem in model checking. In order to search the state
space of a program exhaustively (as most model checkers at-
tempt to do), one needs a representation of that state space.
JPF chooses to model the state space of a Java program by
recording configurations of the Java Virtual Machine (JVM).
JPF has its own JVM which keeps track of different configu-
rations that are visited during the execution of the program
that is being verified. Execution of native code, by defini-
tion, moves the program execution outside the scope of the
JVM and hence cannot be observed by JPF. Even if one tries
to keep track of program execution at a lower level of ab-
straction, perhaps by keeping track of the physical memory
and processor state, a similar problem will arise if one tries
to analyze a distributed program which involves interactions
among multiple machines or a program that interacts with
a database server, etc. Eventually, this will require keep-
ing track of the state of each and every component that the
program interacts with. This is unlikely to be a scalable ap-
proach due to the state space explosion. Moreover, in many

In
te

rfa
ce

G

ra
m

m
ar

Interface
Compiler

Program

Model
Checker

Top-down
parser

parse
table

semantic
predicates

and
semantic
actions

pa
rs

er
 s

ta
ck

C
om

po
ne

nt
 S

tu
b

method invocation
(lookahead)

Figure 1: An overview of our approach

(if not the majority) of cases, the developer who is trying to
check the correctness of a program may not have access to
the code of all the components that the program interacts
with.

In this paper, we propose a semi-automated approach to
attack the above mentioned problems. We propose an in-
terface specification language and require the users to write
interface specifications for components that are outside the
scope of the current verification effort. Our interface specifi-
cation language allows a user to write an interface grammar
for a component to specify the constraints on the ordering
of calls made by the program to that component. This ap-
proach enables modeling of nested call structures that can-
not be expressed by interfaces based on finite state machines.
Moreover, in order to provide a flexible approach that can
handle complex interface constraints, our interface specifi-
cation language allows the users to escape to Java and write
semantic predicates or actions in Java, specifying the be-
havior of the component (similar to the approach used by
parser generators such as Yacc [13]). We believe that our
approach provides a balance between two extreme alterna-
tives, i.e., writing stubs completely manually or automati-
cally extracting simple abstract models such as finite state
machines.

Figure 1 shows an overview of our approach. We have
built an interface compiler that takes an interface gram-
mar as input and automatically generates a stub for the
corresponding component. The component stub is a table-
driven top-down parser that parses the sequence of incom-
ing method calls (i.e., the method invocations) based on the
grammar provided in the interface specification. During ex-
ecution, the stub/parser executes the semantic predicates
and actions at the appropriate times based on their place-
ment in the productions of the interface grammar. If the
program that uses the component violates the component’s
interface, then the component stub either reports a parse
error (that corresponds to an error in the call sequence) or
a semantic predicate violation (which can correspond to an
error in an argument that is passed to the component).

In order to write compact interfaces it is necessary to sup-
port nondeterminism in an interface specification language.
A stub generated from an interface specification of a compo-

nent should generate an over-approximation of the behavior
of that component. The use of nondeterminism allows spec-
ification of a set of behaviors in a concise manner. Our
interface specification language provides a nondeterministic
switch operator, i.e., two or more switch cases evaluate to
true, then one of them is selected nondeterministically.

We assume that the target software model checker pro-
vides a nondeterministic choice primitive. Our current in-
terface compiler uses the nondeterministic choice primitives
provided by JPF. We can easily modify our interface com-
piler to support other model checkers as long they sup-
port nondeterministic choice. During verification, the model
checker exhaustively checks all possible choices that can
result from the use of nondeterministic choice primitives.
While generating the stub code, our interface compiler con-
verts the nondeterministic choices in the interface grammar
to calls to the nondeterministic choice primitive of the model
checker. This means that all possible behaviors provided by
the interface will be checked by the model checker during
verification of the program with the automatically gener-
ated stub.

Our approach enables model checking to be executed in
a modular fashion by replacing different components in the
software system with environment models generated from
their interfaces. We conducted a case study to demonstrate
our approach using Enterprise JavaBeans (EJB) Persistence
API clients. We wrote an interface grammar for the Per-
sistence API and verified Persistence API clients using a
stub automatically generated from this interface. Our ex-
perimental results demonstrate that interface grammars can
be used effectively in modular verification.

The rest of the paper is organized as follows. Section 2
provides an overview of our interface specification language.
Section 3 discusses the interface compiler. Section 4 dis-
cusses the EJB case study. Section 5 includes a discussion
on related work, and Section 6 concludes the paper.

2. INTERFACE GRAMMARS
We propose interface grammars as a language for speci-

fication of component interfaces. The core of an interface
grammar is a set of production rules that define a Context
Free Grammar (CFG). This CFG specifies all acceptable
method call sequences for the given component. Given an
interface specification for a component, our interface com-
piler generates a stub for that component. This stub is a
table-driven top-down parser [1] that parses the sequence of
incoming method calls (i.e., the method invocations) based
on the CFG defined by the interface specification.

For example, consider a component for transaction man-
agement with the following methods: begin, which begins
a transaction; commit which commits a transaction; and
rollback which rolls back a transaction. Now consider the
following (simplified) interface grammar:

Start → Inactive
Inactive → begin Active

| ε
Active → commit Inactive

| rollback Inactive

This is a context free grammar with the nonterminal sym-
bols Start, Inactive, and Active; the start symbol Start; and
terminal symbols begin, commit, and rollback. Note that

this grammar specifies a language that consists of sequences
of symbols begin, commit, and rollback. In our framework,
this language corresponds to the set of acceptable incoming
call sequences for a component, i.e., the interface of the com-
ponent. According to the above interface grammar, the first
call to the transaction component has to be a begin call
which then should be followed by a commit or a rollback

call.
Given the above grammar we can construct a parser which

can serve as a stub for the transaction component. This
stub/parser will simply use each incoming method call as
a lookahead symbol and implement a table driven parsing
algorithm. If at some point during the program execution
the stub/parser cannot continue parsing, then we know that
we have caught an interface violation.

However, the simple interface example we gave above does
not require the power of context free grammars. The same
interface can be specified using finite state machines. In-
stead, consider a transaction manager that allows nested
transactions (also known as subtransactions). In nested
transactions a subtransaction can begin within the scope
of another transaction, hence, allowing only a subset of the
operations of the parent transaction to be rolled back in case
of an error. The following interface grammar specifies the
interface for the nested transaction manager:

Start → Base
Base → begin Base Tail Base

| ε
Tail → commit

| rollback

Note that this interface specification allows nesting of match-
ing begin and commit or rollback calls and, hence, cannot
be expressed using finite state machines.

Our interface specification language also supports spec-
ifying semantic predicates and semantic actions that can
be used to write complex interface constraints. A seman-
tic predicate is a piece of code that can influence the parse,
whereas a semantic action is a piece of code that is executed
during the parse. Semantic predicates and actions provide
a way to escape out of the CFG framework and write Java
code that becomes part of the component stub. The se-
mantic predicates and actions are inserted to the right hand
sides of the production rules, and they are executed at the
appropriate time during the program execution (i.e., when
the parser finds them at the top of the parse stack).

Figure 2 shows the transaction and recursive transaction
classes from the EJB interface specification. In addition
to the begin, commit and rollback methods we discussed
in the simplified interface grammar examples above, these
grammars include another method called setRollbackOnly

and two query methods isActive and getRollbackOnly.
The method setRollbackOnly can only be invoked if there
is an active transaction, and after it is invoked, the only
way to finish the transaction is to invoke rollback. The
specification shown in Figure 2 includes one grammar for
the transaction class and an additional grammar for the
recursive_transaction class. The nonterminals used in
the transaction grammar are start, inactive, active, and
rollback_only and the nonterminals for the recursive trans-
action grammar are start, base and tail. By default start
is the start symbol.

Note that the interface grammars shown in Figure 2 are

based on the simple grammars we discussed above. An
interesting difference between the transaction and recur-
sive transaction grammars in Figure 2 is the way they han-
dle roll-back-only status. In the transaction grammar, roll-
back-only status is handled at the grammar level by using a
nonterminal that corresponds the case when roll-back-only
is set. In the recursive transaction grammar, roll-back-only
status is handled with semantic predicates and semantic ac-
tions. Our interface specification language supports both of
these approaches. Note that relying on just grammar rules
to keep such state information would produce a large num-
ber of nonterminals. On the other hand relying only on
semantic predicates and actions would degenerate the inter-
face specification into a hand written Java stub.

In Figure 3 we show a (simplified) grammar defining the
abstract syntax of our interface grammar language. We de-
note nonterminal and terminal symbols and Java code and
identifiers with different fonts. The symbols << and >> are
used to enclose Java statements and expressions. Incoming
method calls to the component (i.e., method invocations)
are shown with adding the symbol ? to the method name
as a prefix. Outgoing method calls (i.e., method calls by
the component) are shown with adding the symbol ! to the
method name as a prefix. In the grammar shown in Fig-
ure 3, we use “∗” to denote zero or more repetitions of the
preceding symbol, and “?” to denote that the preceding
symbol can appear zero or one times.

An interface grammar consists of a set of class interfaces
(not to be confused with Java interfaces) (represented in rule
(1) in Figure 3). The interface compiler generates one stub
class for each class interface. Each class interface consists
of a set of semantic actions and a set of production rules
that define the CFG for that class (rules (2), (3) and (4)).
A semantic action is simply a piece of Java code that is in-
serted to the stub class that is generated for the component
(rule (20)). A rule corresponds to a production rule in the
interface grammar. Each rule has a name and a block (rule
(5)). A rule block consists of a sequence of statements (rule
(6)). Each statement can be a rule application, a semantic
action, a declaration, a choose block, a method invocation,
a method return or a method call (rules (7)-(14)). A se-
mantic action corresponds to a piece of Java code that is
executed when the parser sees the nonterminal that cor-
responds to that semantic action at the top of the parse
stack. A rule application corresponds to the case where a
nonterminal appears on the right hand side of a production
rule. A declaration corresponds to a Java code block where
a variable is declared and is assigned a value (rule (21)). A
choose block is simply a switch statement (rules (11) and
(15)). A selector for a switch case can either be a method
invocation (i.e., an incoming method call), a semantic pred-
icate or the combination of both (rules (16) and (17)). A
switch case is selected if the semantic predicate is true and
if the lookahead token matches to the method invocation
for that switch case. A method return simply corresponds
to a return statement in Java. When the component stub
receives a method invocation from the program, it first calls
the interface parser with the incoming method invocation,
which is the lookahaed token for the interface parser. When
the parser returns, the component stub calls the interface
parser again, this time with the token which corresponds to
the method return. Finally, a method call is simply a call to
another method by the stub.

class transaction
implements EntityTransaction {

<< entity_manager m; ... >>;
rule start { apply inactive; }
rule inactive {
choose {

case ?begin(): {
!<< m >>.begin();
return begin; apply active;

}
case ?isActive(): {
return isActive << false >>;
apply active;

}
case ?getRollbackOnly(): {
return getRollbackOnly << false >>;
apply active;

}
case : { }

}
}
rule active {
choose {

case ?commit(): {
!<< m >>.commit();
return commit; apply inactive;

}
case ?commit(): {
!<< m >>.rollback();
<< throw new RollbackException(); >>

}
case ?setRollbackOnly(): {
return setRollbackOnly;
apply rollback_only;

}
case ?isActive(): {
return isActive << true >>;
apply active;

}
case ?getRollbackOnly(): {
return getRollbackOnly << false >>;
apply active;

}
case ?rollback(): {
!<< m >>.rollback(); return rollback;
apply inactive;

}
}

}
rule rollback_only {
choose {

case ?setRollbackOnly(): {
return setRollbackOnly;
apply rollback_only;

}
case ?isActive(): {
return isActive << true >>;
apply rollback_only;

}
case ?getRollbackOnly(): {
return getRollbackOnly << true >>;
apply rollback_only;

}
case ?rollback(): {
!<< m >>.rollback(); return rollback;
apply inactive;

}
}

}
}

class recursive_transaction
implements EntityTransaction {

<< ... >> ;
rule start { apply base; }
rule base {

choose {
case ?begin: {

<< level++; >>;
!<< m >>.begin();
return begin;
apply base;
apply tail;
apply base;

}
case ?setRollbackOnly(): {

<< isRollbackOnly = true; >>;
return setRollbackOnly;
apply base;

}
case ?isActive(): {

return isActive << level > 0 >>;
apply base;

}
case ?getRollbackOnly(): {

return getRollbackOnly << isRollbackOnly >>;
apply base;

}
case : { }

}
}
rule tail {

choose {
case ?commit() << !isRollbackOnly >> : {

!<< m >>.commit();
<< decrement(); >>;
return commit;

}
case ?commit() << !isRollbackOnly >> : {

!<< m >>.rollback();
<< decrement(); >>;
<< throw new RollbackException(); >>

}
case ?setRollbackOnly(): {

<< isRollbackOnly = true; >>;
return setRollbackOnly;
apply tail;

}
case ?isActive(): {

return isActive << true >>;
apply tail;

}
case ?getRollbackOnly(): {

return getRollbackOnly << isRollbackOnly >>;
apply tail;

}
case ?rollback(): {

!<< m >>.rollback();
<< decrement(); >>;
return rollback;

}
}

}
}

Figure 2: A portion of the EJB interface grammar that specifies the interface constraints about the transac-
tions and recursive transactions

(1) main → class *

(2) class → class classid { item * }

(3) item → semact ;
(4) | rule

(5) rule → rule ruleid block

(6) block → { statement * }

(7) statement → block
(8) | apply ruleid ;
(9) | semact ;
(10) | declaration ;
(11) | choose { cbody * }
(12) | ? minvocation ;
(13) | return mreturn semexpr ? ;
(14) | ! mcall ;

(15) cbody → case select ? : { statement * }

(16) select → ? minvocation sempred ?
(17) | sempred

(18) sempred → << expr >>

(19) semexpr → << expr >>

(20) semact → << statement >>

(21) declaration → << type id = expr >>

Figure 3: Abstract syntax for the interface grammar
language

3. INTERFACE GRAMMAR COMPILER
We have implemented a compiler for our interface gram-

mars, targeting the Java language. Our interface compiler
executes in three major steps:

1. Parse the input interface grammar specification and
construct an abstract syntax tree;

2. Convert this abstract syntax tree into a Context Free
Grammar (CFG);

3. Output a parser for this resulting CFG.

Our interface compiler generates a stub for each class in the
interface specification. At run time, the stub for a class calls
the parser that is generated based on the interface grammar
of that class, with the method calls it witnesses. Below, we
describe the conversion process from interface grammars to
context free grammars, generation of parsers for the result-
ing context free grammars, and the runtime system for the
automatically generated parser/stubs.

Our method generates a context free grammar from the
interface grammar specification and at runtime the auto-
matically generated stub uses this grammar to parse method
invocations. We chose to use a modified LL(1) algorithm [1]
as the basis for our parser, both for its familiarity and for
its relative ease of implementation. There are a number of
different potential ways to parse an LL(1) grammar, but for
the purposes of this discussion we will distinguish two; the
recursive descent parser and the table driven parser. Both
of these approaches have similar efficiency. A recursive de-
scent parser is generally considered easier to read for humans

and therefore is preferable for hand coded parsers (which is
not the case for us). An advantage of using a recursive de-
scent parser in our context is the fact that we can insert the
semantic predicates and actions to the methods of the re-
cursive descent parser, whereas for a table driven parser, we
must find a way to represent semantic actions or semantic
predicates as data. The most important difference for our
purposes, however, is where the tokens come from.

We distinguish two styles of parsing: parser-calls where
the parser controls when the next token is produced, that
is, the parser has a way of demanding that its environment
produce a token for it when it chooses; and code-calls where
the code invoking the parser controls when the next token
is produced. We require the code-calls convention, because
we are writing stubs for components that will have their
methods invoked by user code. It is very difficult to write a
single threaded recursive descent parser using the code-calls
convention in Java, because the most natural implementa-
tion of a recursive descent parser stores its internal state
on the same control stack that the user code will be us-
ing. We can use threads to resolve this problem (in effect
by creating a new control stack for the parser); however,
this would require synchronization between the user code
and the parser threads. More importantly this additional
concurrency would increase the state space and degrade the
performance of the target Java model checker, i.e., it would
contribute to the problem that we wish to solve in the first
place. Based on these concerns our interface compiler gen-
erates table-driven parsers for interface grammars.

3.1 Compile-time computation
The goal of our interface compiler is to translate an in-

terface grammar into a number of Java classes. First, our
interface compiler uses the ANTLR tool [3] to parse the in-
put interface specification and construct an abstract syntax
tree representing the input specification.

Generating the context free grammar: The second ma-
jor step of computation in our interface compiler involves
converting the abstract syntax tree generated by the parser
into a context free grammar. In addition to nonterminal
and terminal symbols, the resulting context free grammar
also contains semantic predicates and actions. The termi-
nal symbols of the resulting context free grammar are the
method invocations and the method returns for each method
m in the interface that we are stubbing, and we represent
these with the symbols ?m and ¿m, respectively. Note that,
?m represents an external client calling m, and ¿m repre-
sents a return from such a call.

Formally, we define a context free interface grammar G as
a tuple

G = 〈NT,T, SA,SP,P〉
where NT is the set of nonterminals, T is the set of termi-
nals, SA is the set of semantic actions, and SP is the set
of semantic predicates. P ⊆ NT × (NT ∪ T ∪ SA ∪ SP)∗ is
the set of productions where each production consists of one
nonterminal symbol (left hand side of the production) and a
sequence of nonterminal and terminal symbols and semantic
actions and predicates (right hand side of the production).

In Figure 4 we give an attribute grammar based on the ab-
stract syntax of our interface specification language shown
in Figure 3. This attribute grammar shows how interfaces
written in our interface specification language are converted

to a context free interface grammar. In the attribute gram-
mar shown in Figure 4, for every symbol s, s.t ∈ (NT ∪
T ∪ SA ∪ SP)∗ is a sequence of nonterminal and terminal
symbols and semantic actions and predicates, and s.p ⊆
NT × (NT ∪ T ∪ SA ∪ SP)∗ is a set of productions. We
use ‖ to denote concatenation of sequences, 〈〈x〉〉 to denote a
semantic action containing x, and JxK to denote a semantic
predicate containing x.

Constructing the parse table and computing the first
and follow sets: After we construct a context free interface
grammar from the abstract syntax tree of the interface spec-
ification using the attribute grammar rules given in Figure 4,
the next step is to construct the LL(1) parser table for the
resulting context free interface grammar. We need to mod-
ify the standard LL(1) parse table construction algorithm
due to two reasons:

• We have semantic predicates that can influence the
parse, by disallowing certain productions;

• We want to support nondeterministic choice in inter-
face specifications which will be resolved by the target
model checker’s search heuristics at runtime.

Accordingly, for a given grammar G = 〈NT,T, SA, SP,P〉
our parsing table is a function t : NT × T → P(SP × P).

Note that, in normal LL(1) parsing, given a nonterminal
(at the top of the parse stack) and a terminal (the looka-
head) the parsing table should return a single production;
more than one production in one cell of the table indicates
that the grammar is not LL(1). We relax this restriction
since we allow semantic predicates and since we allow some
nondeterminism in the interface specifications with the non-
deterministic choose construct. When semantic predicates
are added, some productions may not be available at run-
time since the semantic predicate that is guarding that pro-
duction may evaluate to false. Accordingly we pair the se-
mantic predicate controlling when a production is available
with the production in the parsing table. Finally since we
permit some nondeterminism based on the nondeterminis-
tic choose operator, we relax the parsing table still further.
The parsing tables we construct consist of lists of pairs of
semantic predicates and productions. More than one pro-
duction can be available given the nonterminal at the top
of the parser stack and the lookahead token; that is, more
than one pair’s semantic predicate can evaluate to true. The
semantics of that event are discussed in Section 3.2.

To compute the parse table t, we need two auxiliary func-
tions first and follow [1], which we compute using the algo-
rithms shown in Figures 5 and 6. Because we are dealing
with code that writes code, we introduce some conventions
to make our presentation simpler:

• 〈〈x〉〉 means “code that will output x”.

• JxK is the predicate that, when evaluated, computes x.

is the empty list.

• � is the end of input token.

• 〈〈. . . $x . . .〉〉 means that x should be substituted into
the generated code.

The parse table is constructed using the first and follow
functions based on the standard LL(1) parse table construc-
tion algorithm [1], except, as we discussed above, we allow

multiple productions to be inserted to a single cell of the
parser table. The resulting parse tables is embedded di-
rectly in the code we generate. We then generate stubs for
each method in the Java interface we are implementing; the
details of the stub code will be discussed in Section 3.3.

Closures and scoping: There remain some complications.
Our Java escapes here are code, but need to be encoded as
data for the runtime parser. We have ignored this so far,
using 〈〈x〉〉 and JxK. To encode our code as data, we wrap
all Java escapes using anonymous inner classes, and refer to
these as closures; the code is then simply

new Closure () {
public Object apply () {

$code
}

}
Predicates can be constructed in a similar fashion.

However, this introduces a new problem; now, every Java
escape is in a lexically distinct context from every other Java
escape. While writing interfaces, it is very useful to retain
some information across Java escapes, and additionally ar-
guments in method calls can define new variables that we
must make decisions on. If we were using a recursive descent
parser, we could exploit the Java compiler’s scoping, but we
have dismissed that possibility above; accordingly we have
to track it ourselves with our own symbol table.

We have implemented a symbol table at runtime with five
important methods. The methods openscope and closescope
open a new scope and close the most recent scope, respec-
tively. The method bind(n) introduces n as a new variable in
the topmost scope. The method get(n) searches the symbol
table for the most recently bound n and returns its associ-
ated value, and the method put(n, o) is similar but sets that
associated value.

If we used the variable names as keys, this would result in
dynamic scoping, whereas our goal is to implement lexical
scoping. Accordingly, we assign to each variable declaration
in the program a unique number, and use that as a key. We
must also keep track of the declarations that are visible both
before and after every Java escape. Given this, we can now
alter the body of the Java closure code to be as follows:

for declaration ∈ visibleSymbolsBefore do
〈〈$(declaration.type), $(declaration.name)

= symbols.get ($(declaration.id));〉〉
od
〈〈$code〉〉
for declaration ∈ visibleSymbolsAfter do
〈〈symbols.put ($(declaration.id),

$(declaration.name));〉〉
od

We must also introduce opening scopes, closing scopes, and
binding into our generated grammar; Figure 4 includes this
already.

3.2 Runtime computation
Now that we have produced Java code with a parse table,

we must discuss the runtime environment that completes
our stub. We can consider each class in isolation since they
are independent and contain independent parsing tables.

The core parsing algorithm is given in Figure 7. Each stub
we generate contains code that corresponds to an implemen-

rule→ rule ruleid block rule.p := {(ruleid, block.t)} ∪ block.p

block→ { statement∗} block.t := 〈〈openscope()〉〉 ‖
n

i

statementi.t ‖ 〈〈closescope()〉〉

block.p :=
[
i

statementi.p

statement→ block statement.t := block.t

statement.p := block.p

statement→ apply ruleid ; statement.t := ruleid

statement→ semact statement.t := 〈〈semact.statement〉〉
statement→ declaration ; statement.t := 〈〈bind(declaration.id); declaration.id = declaration.expr;〉〉
statement→ choose { cbody∗} statement.t := statement.id

statement.p :=
[
i

{(statement.id, cbodyi.t)} ∪ cbodyi.p

statement→ ? minvocation ; statement.t := ?minvocation

statement→ return mreturn ; statement.t := ¿mreturn

statement→ return mreturn semexpr ; statement.t := 〈〈result = semexpr.expr〉〉 ‖ ¿mreturn

statement→ ! mcall; statement.t := 〈〈mcall(); 〉〉

cbody→ case select? : { statement∗ } cbody.t := select.t ‖〈〈openscope()〉〉 ‖
n

i

statementi.t ‖ 〈〈closescope()〉〉

cbody.p :=
[
i

statementi.p

select→ ? minvocation sempred select.t := ?minvocation ‖ Jsempred.exprK
select→ ? minvocation select.t := ?minvocation

select→ sempred select.t := Jsempred.exprK

Here, ‖ denotes sequence concatenation. Unless otherwise specified, for any symbol s, s.p = ∅. For statement, the attribute
statement.id is a unique identifier for that statement that can serve as a nonterminal.

Figure 4: Translation from syntax tree to context free grammar

tation of this algorithm. The algorithm shown in Figure 7. is
fairly similar to the standard LL(1) table-driven parsing al-
gorithm with the addition of semantic actions and semantic
predicates, but the choose function merits discussion. In the
event that multiple productions are available and legal, we
need to choose one of them; here we use the model checker’s
nondeterministic choice primitive. Also, fail causes an ex-
ception to be thrown, or an assertion to be violated, as befits
the situation.

3.3 Stubbing methods
Armed with this algorithm we can finally discuss the meth-

ods to be stubbed out; these become

public $returnType(stub)
$name(stub)($arguments(stub)) {

arguments = [$arguments(stub)];
result = null; exception = null;

parser.witness (?$name(stub));
try {

parser.witness (¿$name(stub));
} catch (Exception e) {

parser.tossUntil (¿$name(stub));
exception = e;

}
if (exception != null) throw exception;

proc witness(t) ≡
while stack.top() 6= t do

o := stack.pop();
if o ∈ SP ∧ ¬o.apply() then fail
elsif o ∈ SA then o.apply();
else productions := table(o, t);

viable := {(p, prod :(p, prod) ∈ productions
∧ p.apply()};

chosen := choose(viable);
stack.addAll(chosen);

fi
od
stack.pop();

Figure 7: Parsing algorithm

return ($returnType(stub)) result;

}

The way we deal with result and exception deserves com-
mentary. Throwing exceptions in an uncontrolled manner
can cause the parse information to be destroyed; for exam-
ple it may not consume the ¿ tokens properly. We have
to have some support for this in case of exceptions in the

first := {(n, ∅) : n ∈ NT} ∪ {([], {(JtrueK, ε)})};
do for each production P = X → Y1Y2 . . . Yn do

if P = X → ε then continue fi
s := first(Y1Y2 . . . Yn);
p := JtrueK;
for each Yi do

d := false;
if Yi ∈ SP then p := p ∧ Yi;
elsif Yi ∈ SA then ;
elsif Yi ∈ T then target := first(Yi);

if ε ∈ target then putative := {(q, t) : (q, t) ∈ target ∧ t 6= ε}
if s 6= putative ∧ s 6= target

then first(Y1Y2 . . . Yn) := putative; fi
else if s 6= target then first(Y1Y2 . . . Yn) := target fi

d := true;
fi

else if Yi /∈ s then first(Y1Y2 . . . Yn) := {(p, Yi)}; fi
d := true;

fi
if ¬d then first(Y1Y2 . . . Yn) := first(Y1Y2 . . . Yn) ∪ {(p, ε)}; fi

od
od
for each production P = X → Y1Y2 . . . Yn do

first(P) := first(P) ∪ first(Y1Y2 . . . Yn);
od

od while any element in first has changed;

Figure 5: Algorithm for computing first sets

Java escapes, but arguably these are errors anyway; we re-
cover in this situation by throwing away everything on the
parse stack until we reach the ¿ we were expecting, and then
propagate the exception. But not all exceptions are errors:
a faithful representation of the interface may require that
exceptions be thrown, and we must then throw them in a
manner consistent with our parsing algorithm. Accordingly
to handle this we store the exception in a member variable
and then throw it at the end of the stub method.

Return values are similar; return in Java only works for
the most immediate enclosing method. Accordingly we use
the same technique we use for handling exceptions; we store
the return value in a member variable and then return it at
the end of the stub method.

4. VERIFICATION OF EJB CLIENTS
We have applied our technique and tool to the task of

verifying clients of the Enterprise Java Beans 3.0 Persistence
API.

4.1 Enterprise Java Beans 3.0 Persistence API
Enterprise Java Beans 3.0, or EJB 3.0, is the third major

revision of the Enterprise Java Beans specification. The full
specification is concerned with large scale software architec-
ture with a web focus; we are interested here in the Java
Persistence API, an affiliated but distinct API for object-
relational mapping. That is, the Java Persistence API is a
standardized interface to a framework for mapping a Java
object graph to and from a relational database. The Persis-
tence API in EJB 3.0 has been inspired by a number of third
party object-relational mapping tools, including Hibernate
and JDO, and in turn the new specification has been imple-

mented independent of the EJB 3.0 framework; examples of
this include Hibernate again and Glassfish.

The entry point to this API is the EntityManager inter-
face, which is fetched from a EntityManagerFactory. The
core of the interface is simple enough, with methods like
persist, remove, find and contains. Each EntityManager

has an associated transaction object, and code sequences
like em.getTransaction().begin(); are a common idiom.

Objects in the Persistence API have a four phase life-cycle:

• unmanaged, or transient objects are not stored in the
database—for example, newly created objects;

• persistent objects are stored in the database;

• detached objects are persistent objects that have be-
come separated from their EntityManager—this be-
comes useful in certain situations concerning long lived
client objects where a long term database transaction
is undesirable;

• removed objects are scheduled to be removed from the
database.

The mapping from an object to a relational table is sup-
ported by Java annotations on the classes, fields and meth-
ods of data objects. For example, all classes intended to
participate in the Persistence API must have the Entity

annotation on the class, marking it as an entity bean. The
primary key can be marked with Id and can be attached to
methods or fields, and as well methods can be marked to
be executed before or after database events like insertion or
updates.

The Persistence API also contains a query language simi-
lar to SQL. We do not consider a simulation of the query lan-

follow := {(n, ∅) : n ∈ NT} ∪ {([], {(JtrueK,�)})};
do for each production P = X → Y1Y2 . . . Yn do

for each sublist Y1Y2 . . . Yn, Y2 . . . Yn, . . . , Yi . . . Yn, . . . , Yn do
if Yi ∈ NT then if i = n then s := []; f := {(JtrueK, ε)}

else s := Yi+1 . . . Yn;
f := first(s);
if ∃p : (p, ε) ∈ f then f := f ∪ follow(X) fi
follow(Yi) := follow(Yi) ∪ f ;

fi
fi

od
od

od while any element in follow has changed;

Figure 6: Algorithm for computing follow sets

guage in this paper, largely because simulating it properly
would require a full string parser for the SQL-like syntax.
Our interface specification also does not model concurrent
update operations or the XML extension defined by the Per-
sistence API.

4.2 Persistence API clients
The normal life cycle of a Persistence API client is to use

an EntityManagerFactory, to retrieve an EntityManager,
begin a transaction, modify the database, and then commit
or rollback the transaction. Misbehaving clients, or even
properly behaving clients in some circumstances can trigger
exceptions during this process. Some of these exceptions are
pedestrian—for example, calling flush outside of a transac-
tional context—but others are more alarming.

As an example of the latter, the getReference method
returns a proxy for a database object. This proxy can serve
as a stand in for the real object in many cases, and is used
when making a separate database query to retrieve the ob-
ject is undesirable—for example, chasing links in a tree. An
eager loading implementation may load the entire tree into
memory one node at a time by requesting parents and chil-
dren.

The part that makes this alarming is that the presence
of the referenced object is not checked at method call time;
instead, it is checked the first time data from the putative
object is referenced. This could be in an entirely different
piece of code, a piece of code unrelated to the database.

Another example of a properly behaving client nonetheless
triggering an exception is in committing a successful transac-
tion; because the Persistence API supports optimistic lock-
ing it is possible that a commit can be aborted because the
database row corresponding to the object in question has
changed since it was first read, with no possibility of safe
detection by the user code.

These consequences, and the difficulty of verifying proper-
ties of a program that depends, intimately, on an enormous
third party database for its operation, motivate some sort of
modular analysis that captures all these strange error con-
ditions but yet is not too heavyweight to be used; thus we
applied our interface grammar tools to the Persistence API.
We can also use our framework to analyze extensions to the
API; one such extension might be recursive transactions,
which are not supported in EJB 3.0 but are very common
in the databases themselves.

To verify clients, we have written interface grammars for

each of the EntityManagerFactory, EntityManager and
EntityTransaction interfaces. Portions of these grammars
are shown in Figure 2. Our grammars in total are some
474 lines long, defining all three fundamental classes and
their behaviors; by comparison the abstract class in Hiber-
nate that defines just the EntityManager interface is some
657 lines long, and the total code required to implement
the Persistence API using Hibernate as a backend is some
64,000 lines of Java code.

4.3 Experiments
We have applied these grammars to several test cases from

the Hibernate implementation. In some sense these are ex-
cellent measures of the fidelity of our interface; since they
were written to expose errors in Hibernate they should simi-
larly expose errors in our simulation of the Persistence API.
As well, the test cases include some invalid clients that trig-
ger exceptions; we can use these to verify clients against the
interface, marking clients with erroneous behavior.

We analyze the following test cases:

• EntityManagerTest.testContains tests minimal nor-
mal functionality, like persisting an object and retriev-
ing it under its primary key. It also ensures that trying
to check the status of a non-manageable object will fail
with an exception.

• EntityManagerTest.testClear ensures that objects
managed by the EntityManager transition to the de-
tached state after a clear.

• EntityManagerTest.testPersistNoneGenerator

ensures that a simple object is equal to itself after it
has been persisted and reloaded.

• EntityManagerTest.testIsOpen verifies that an
EntityManager is open upon creation and stays that
way until it is closed.

• AssociationTest.testBidirOneToOne verifies that per-
sisting one half of a bidirectional association will per-
sist the other half as well.

• AssociationTest.testMergeAndBidirOneToOne verifies
that the bidirectional association works even with de-
tached objects.

• CallbacksTest.testCallBackListenersHeirarchy ver-
ifies that methods tagged with @PrePersist are called
when the object in question is persisted.

• CallbacksTest.testException verifies that methods
in other classes that have a declared @EntityListeners

relationship with the persisted object are also called.
The name comes from the method that is to be called,
which throws an exception.

• GetReferenceTest.testWrongIdType verifies that ask-
ing for objects using the wrong primary key type is an
illegal operation.

• ExceptionTest.testEntityNotFoundException verifies
that nonexistent objects fetched with getReference

should raise exceptions when they are referred to.

• InheritanceTest.testFind verifies that if A is a sub-
class of B, persisting an instance of A and asking for
all Bs should retrieve the first object.

• testAlwaysTransactionalOperations method of
FlushAndTransactionTest class checks that flushes and
locks are only valid from within transactions.

We conducted our experiments using a Linux machine
with 2.8 GHz Pentium 4 with 2 gigabytes of memory. We ran
each of the test cases listed above in two configurations on
our testbed. We first ran the test case normally, to test the
validity of our interface. We achieved a 100% success rate
in this, showing that our interface successfully simulates the
behavior of EJB Persistence API. Then we ran it again in a
configuration where any exceptions seen in the parsing trig-
ger fatal runtime errors; these test whether the clients are
faithful to the Persistence API. Of our test cases, some 5
of the 12 deliberately perform illegal operations, which are
caught. Our results are shown in Table 1.

We were unable to measure run times in increments of
less than a second, as JPF itself does not support getting the
current time from within the running program, and provides
only second and megabyte resolution for its output. Even
with this limited resolution, our results demonstrate that
using our approach verification of both nontrivial client code
and the interface specification can be done efficiently using
relatively little memory and execution time.

5. RELATED WORK
Use of finite state machines for specification, verification

and extraction of interfaces have been studied extensively [10,
9, 17, 2, 6, 7]. Finite state machines cannot specify nested-
call structures such as the recursive transaction example we
use in this paper. The interface grammars we propose in
this paper enables us to specify such interactions. More-
over, we believe that the semantic predicates and actions
that are allowed in our interface grammars are necessary
to model interfaces of complex components. Another factor
that differentiates our work from that of [17, 2] is that we
do not extract interfaces, rather, we use interface grammar
specifications to check both interface conformance and also
to achieve modular verification.

The Specification Language for Interface Checking (SLIC)
is used to specify interface constraints in the SLAM project [4,
5]. In SLIC, interfaces are specified using state machines.
The transitions of state machines are associated with C

statements that can be used to specify additional constraints
on the interface. As with the other state machine based ap-
proaches discussed above, the approach used by SLIC is not
appropriate for specification of nested call sequences.

In [6, 7, 8], finite state interface specifications are used
to achieve modular verification where behavior verification
and interface verification are executed as two separate steps.
Interface grammars proposed here provide a richer language
for specification of interfaces and can be integrated to the
modular verification approach used in [6, 7, 8].

Environment generation is a critical problem for achieving
modularity in software model checking and has been studied
before. [12] presents techniques for automatically closing en-
vironments of open reactive programs by automatically cre-
ating the most general environment for the program using
dataflow analysis. [14], on the other hand, investigates au-
tomatically generating environments for components using
side effect and points-to analyses for modular model check-
ing. We use a semi-automated approach where the user
writes an interface grammar and the interface grammar is
automatically compiled to a component stub for modular
verification. We believe that for specification of rich inter-
faces such as the EJB interface discussed in this paper it is
necessary to get user input in order to restrict the behaviors
allowed by the interface.

The Bandera environment generator discussed in [15] also
uses a semi-automated approach in which environment mod-
els are automatically synthesized from environment assump-
tions. The environment assumptions are given as LTL for-
mulas or regular expressions specifying ordering of program
actions which are unit method calls or field assignments that
can be executed by the environment. Our approach based
on interface grammars enables us to specify nested call se-
quences that cannot be expressed using formalisms, such as
LTL or regular expressions, that can be recognized by finite
state machines. Also rather than focusing on environment
generation, we are focusing on specification of interfaces. Of
course, these are closely related concepts since the interfaces
of components that interact with a program forms the en-
vironment of that program. However, we believe that it is
more likely for developers to write interface specifications for
different components rather than writing an environment for
a particular program.

6. CONCLUSIONS
We have proposed and implemented a new framework for

conducting modular software model checking based on inter-
face grammars. We proposed an interface specification lan-
guage based on interface grammars and we built a compiler
that automatically generates stubs for components using in-
terface specifications written in our interface specification
language. We have used this tool to conduct model check-
ing relating to the key interfaces of the Enterprise JavaBeans
Persistence API, and have demonstrated that our approach
is feasible and efficient. In future work, we would like to
apply our interface grammars to model checking of concur-
rent programs, as well as the generation of object graphs for
model checking.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
1988.

Test case Interface verification Client verification
Run time Memory used Run time Memory used Errors detected

AssociationTest
testBidirOneToOne 2 s 15 MB 2 s 16 MB
testMergeAndBidirOneToOne 2 s 15 MB 2 s 16 MB

CallbacksTest
testCallBackListenersHeirarchy 2 s 15 MB 2 s 15 MB
testException 2 s 15 MB 2 s 15 MB yes

EntityManagerTest
testClear 2 s 15 MB 2 s 15 MB
testContains 3 s 26 MB 2 s 15 MB yes
testIsOpen 2 s 15 MB 2 s 15 MB
testPersistNoneGenerator 2 s 15 MB 2 s 15 MB

ExceptionTest
testEntityNotFoundException 2 s 15 MB 2 s 15 MB yes

FlushAndTransactionTest
testAlwaysTransactionalOperations 2 s 15 MB 2 s 15 MB yes

GetReferenceTest
testWrongIdType 2 s 15 MB 2 s 15 MB yes

InheritanceTest
testFind 2 s 15 MB 2 s 15 MB

Table 1: Run time and memory usage for test cases on stubbed interface

[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam.
Synthesis of interface specifications for java classes. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symp. on Principles of Prog. Languages, (POPL
2005), 2005.

[3] ANother Tool for Language Recognition (ANTLR).
http://www.antlr.org/.

[4] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In Proceedings
of the SPIN Workshop, pages 103–122, 2001.

[5] T. Ball and S. K. Rajamani. SLIC: A Specification
Language for Interface Checking. Technical Report
MSR-TR-2001-21, Microsoft Research, January 2002.

[6] A. Betin-Can and T. Bultan. Verifiable concurrent
programming using concurrency controllers. In
Proceedings of the 19th IEEE International
Conference on Automated Software Engineering (ASE
2004), pages 248–257, 2004.

[7] A. Betin-Can, T. Bultan, and X. Fu. Design for
verification for asynchronously communicating web
services. In Proceedings of the 14th International
World Wide Web Conference (WWW 2005), pages
750–759, 2005.

[8] A. Betin-Can, T. Bultan, M. Lindvall, S. Topp, and
B. Lux. Application of design for verification with
concurrency controllers to air traffic control software.
In Proceedings of the 20th IEEE International
Conference on Automated Software Engineering (ASE
2005), 2005.

[9] A. Chakrabarti, L. de Alfaro, T. Henzinger,
M. Jurdziński, and F. Mang. Interface compatibility
checking for software modules. In Proceedings of the
14th International Conference on Computer Aided
Verification (CAV 2002), pages 428–441, 2002.

[10] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings 9th Annual Symposium on Foundations
of Software Engineering, pages 109–120, 2001.

[11] P. Godefroid. Model checking for programming
languages using VeriSoft. In Proceedings of the 24th
ACM Symposium on Principles of Programming
Languages, pages 174–186, January 1997.

[12] P. Godefroid, C. Colby, and L. Jagadeesan.
Automatically closing open reactive programs. In
Proceedings of the 1998 ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI 1998), pages 345–357, 1998.

[13] J. R. Levine, T. Mason, and D. Brown. Lex & Yacc.
O’Reilly & Associates, 1992.

[14] O. Tkachuk and M. B. Dwyer. Adapting side-effects
analysis for modular program model checking. In
Proceedings of the 18th IEEE International
Conference on Automated Software Engineering
(ASE), pages 188–197, 2003.

[15] O. Tkachuk, M. B. Dwyer, and C. Pasareanu.
Automated environment generation for software model
checking. In Proceedings of the 4th Joint Meeting of
the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003), pages
116–129, 2003.

[16] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. Automated Software Engineering
Journal, 10(2):203–232, 2003.

[17] J. Whaley, M. Martin, and M. Lam. Automatic
extraction of object-oriented component interfaces. In
Proceedings of the 2002 ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA
2002), 2002.

